The Crystal Structure of Potassium Enneafluorothorate*

By R.R.Ryan and R.A.Penneman
Los Alamos Scientific Laboratory, University of California, Los Alamos, N. M. 87544, U.S.A.

(Received 22 January 1970)

Abstract

The crystal structure of the β form of potassium enneafluorothorate, $\mathrm{K}_{5} \mathrm{ThF}_{9}$, has been determined from counter measurements of 1198 reflections and refined by full-matrix least-squares to an R index of 1.8%. The space group is $C m c 2_{1}$ (No. 36) with cell constants $a=7.848$ (2), $b=12.840$ (2) and $c=$ $10.785(3) ; Z=4, d_{\text {calc }}=3.66 \mathrm{g.cm}^{-3}$. The coordination number of thorium is eight (instead of the possible nine) and the coordination polyhedron of thorium is an irregular dodecahedron with triangular faces. The average $T h-F$ distance is $2.33 \AA$. The ninth fluorine atom is surrounded by six potassium atoms approximately at the corners of an octahedron and is $4.53 \AA$ from the nearest thorium atom.

Introduction

Two polymorphs of the compound $\mathrm{K}_{5} \mathrm{ThF}_{9}$ were identified in the thorough phase study of the $\mathrm{KF}-\mathrm{ThF}_{4}$ system by Asker, Segnit \& Wylie (1952). The compound is of interest from a structural chemistry point of view because $\mathrm{K}_{5} \mathrm{ThF}_{9}$ is one of the rare compounds having a value of nine for the ratio of monatomic unidentate ligand to central atom, others being $\mathrm{K}_{2} \mathrm{ReH}_{9}$ (Abrahams, Ginsberg \& Knox, 1964; Knox \& Ginsberg, 1964); and $\mathrm{K}_{2} \mathrm{TcH}_{9}$ (Ginsberg, 1964). Further, thorium(IV), being the largest of the plus-four actinides, favors nine-coordination with fluorine, the smallest of the halide ions; several examples of this behavior are known: $\left(\mathrm{NH}_{4}\right)_{4} \mathrm{ThF}_{8}$ (Penneman, Ryan \& Rosenzweig, 1968; Ryan, Penneman \& Rosenzweig, 1969); $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{ThF}_{7}$ (Penneman \& Ryan, 1970); and $(\mathrm{Na}, \mathrm{Li})_{7} \mathrm{Th}_{6} \mathrm{~F}_{31}$ (Brunton \& Sears, 1969). The possibility of the existence of a discrete $\mathrm{ThF}_{9}{ }^{5-}$ anion prompted a full three-dimensional X-ray investigation.

Experimental

Single crystals of this material were prepared as follows: a mixture containing slightly greater than a 5: 1 mole ratio of potassium and thorium chlorides was converted to fluorides with aqueous (48%) HF followed by heating in F_{2} gas overnight at $400^{\circ} \mathrm{C}$. The resulting white powder was melted in a covered platinum dish, cooled and ground, and then held at $600^{\circ} \mathrm{C}$ (just below the $\alpha-\beta$ transition temperature at $635^{\circ} \mathrm{C}$) for 100 hr . The hygroscopic $\beta-\mathrm{K}_{5} \mathrm{ThF}_{9}$ crystals were pried from the mass, freed of any adhering KF and sealed in glass capillaries. Although the crystal faces were poorly developed the optical characteristics matched those given for $\mathrm{K}_{5} \mathrm{ThF}_{9}$ by Asker et al. (1952). A fragment of roughly the shape of a parallelepiped with approximate dimensions of $0.2 \times 0.2 \times 0.12 \mathrm{~mm}$ was selected for data collection.

Precession photographs taken with Mo $K \alpha$ radiation

[^0]showed orthorhombic symmetry with the following systematic extinctions: $h k l, h+k$ odd; $h 0 l, l$ odd. The space group is therefore $\mathrm{Cmcm}, \mathrm{C} 2 \mathrm{~cm}$, or $\mathrm{Cmc} 2_{1}$. The cell parameters were estimated by least-squares from room temperature measurements on 12 high-order reflections and are: $a=7.848$ (2), $b=12.840$ (2), and $c=$ 10.785 (3) \AA where the numbers in parentheses are the least-squares standard deviations and refer to the last digit. These cell constants are in agreement with those of Zachariasen (1948). For $Z=4, d_{\text {calc }}=3.66 \mathrm{~g} . \mathrm{cm}^{-3}$, in good agreement with the measured value of 3.60 g.cm ${ }^{-3}$ (Asker et al., 1952).

Intensity measurements were made on $h k l$ and $h \bar{k} \bar{l}$ planes using a Picker computer-controlled four-circle diffractometer described by Busing, Ellison, Levy, King \& Roseberry (1967). Zr -filtered Mo $K \alpha$ radiation, $\theta-2 \theta$ scan, bisecting positions and a take-off angle of 5°, were used to collect data on all reflections for which $2 \theta \leq 50^{\circ}$. Of the 1198 reflections measured, 1164 were judged to be observed according to the criterion $[T-K B] \geq 3 \sigma(I)$ where $\sigma(I)=(T+K B)^{1 / 2}, T$ is the total count and $K B$ is the normalized background.

The intensity of a standard reflection, sampled after every 25 reflections, showed a small but significant decrease, its final value being approximately 2.5% less than its original value. The crystal was checked periodically for orientation and centering. Multiplicative correction factors for the data were derived by fitting the standard reflection measurements with a sixth order polynomial.

Scans about three reflections on a reciprocal lattice vector near a χ angle of 90° were used to estimate an empirical absorption curve as a function of φ for three 2θ values. The absorption was taken to be the product of the value determined as above and a spherical absorption correction. The computed relative transmission varied by about 40 per cent over the range of diffractometer settings used.

Structure determination and refinement

Calculated values of $\bar{E}(0.91)$ and $\overline{E^{2}-1}(0.65)$ indicated the structure to be non-centric. The thorium atom posi-
tion was determined from the Patterson function. A difference Fourier synthesis, phased on the thorium atoms, computed in the centric space group showed the potassium positions to be nearly centrically related, one in the special position $4(c)$ and one in a general position. The potassium peak on the mirror at $z=\frac{1}{4}$ was greatly elongated in the z direction and the contours corresponding to the potassium atom in the general position showed two maxima with approximately the same x and y coordinates, but slightly different z coordinates. These observations prompted us to attempt a solution to the structure in the space group $C m c 2_{1}$. If one chooses the first potassium position to be slightly on one side of the now pseudo mirror at $z=\frac{1}{4}$ (specifying the enantiomorph) one must still put the remaining potassium atoms in two of the four positions possible from the difference map. There are four possibilities, two of which can be rejected because of the proximity of the peaks. Both of these possible heavy atom structures converged to the same least-squares model which was then used to phase an observed Fourier synthesis. This procedure failed to distinguish the real peak from the pseudo peak for those fluorine atoms for which the z coordinate was near $0 \cdot 25$ [i.e. $\mathrm{F}(3)$ and $F(7)]$. It was possible, however, to pick the correct peaks from packing considerations.

A full-matrix least-squares refinement was carried out, including anisotropic temperature factors and extinction, on all reflections observed according to the criterion $I \geq 3 \sigma(I)$. The quantity minimized was $\sum \omega\left(F_{\mathrm{o}}-F_{\mathrm{c}}^{*}\right)^{2}$ where ω is the weight based on counting statistics (Evans, 1961), and

$$
F_{c}^{*}=K F_{c} /\left\{1+g \operatorname{Lp}\left[\frac{2\left(1+\cos ^{4} 2 \theta\right)}{\left(1+\cos ^{2} 2 \theta\right)} 2\right] F_{c}^{2}\right\}^{1 / 2}
$$

in which $K=$ scale constant, $g=$ extinction correction (Zachariasen, 1963; Larson, 1967), Lp = Lorentz-polarization factor, and $F_{c}=$ structure factor calculated in the usual way. Form factors used were those of Cromer \& Waber (1965) for the thorium atoms; the potassium and fluorine form factors were taken from International Tables for X-ray Crystallography (1962) and the dispersion terms for potassium and thorium were from Cromer's (1965) work.

The model chosen as explained above refined to an unweighted R value of 1.8%. The low R value and the physically reasonable anisotropic temperature factors were taken as proof that the model and choice of space group were correct. Hamilton's (1965) tests on the sum of the squares of the residuals, reject the hypothesis that extinction is not present as well as the hypothesis that only the heavy atoms vibrate anisotropically, at the 0.005 confidence level. The hypothesis that the choice of enantiomorph is incorrect can also be rejected at the 0.005 confidence level.
The final coordinates and anisotropic temperature factors are given in Tables 1 and 2. Table 3 contains calculated and observed structure factors.

Table 1. Fractional atomic coordinates
The numbers in parentheses are the least-squares standard error and refer to the least significant digits.

	x	y	z
Th	0	$0.16186(3)$	0.25
$\mathrm{~K}(1)$	0	$0.5769(2)$	$0.2134(3)$
$\mathrm{K}(2)$	$0.2588(4)$	$0.8642(2)$	$0.0527(2)$
$\mathrm{K}(3)$	$0.2468(4)$	$0.8933(2)$	$0.4013(2)$
$\mathrm{F}(1)$	0	$0.0397(4)$	$0.4054(7)$
$\mathrm{F}(2)$	0	$0.2033(6)$	$0.0414(8)$
$\mathrm{F}(3)$	0	$0.3475(4)$	$0.2250(8)$
$\mathrm{F}(4)$	0	$0.2476(6)$	$0.4476(9)$
$\mathrm{F}(5)$	0	$0.5167(6)$	$0.4619(6)$
$\mathrm{F}(6)$	$0.1829(6)$	$0.0327(3)$	$0.1780(5)$
$\mathrm{F}(7)$	$0.2743(5)$	$0.2194(3)$	$0.2729(9)$

Discussion

Fig. 1 is a stereo-pair view of the structure down the a axis. The thorium atom is surrounded by eight fluorine atoms instead of nine. The coordination of the fluorine atoms about the thorium atom can best be described as a slightly distorted dodecahedron with triangular faces (ideal symmetry $D_{2 d}$). The polyhedron contains six Th-F distances of $2.31 \AA(\pm 0.02)$ and two of $2.40 \AA$. The qualitative features of the distortion of the polyhedron can be understood by inspection of the distances (Table 4) and Figs. 2 and 3 which show the coordination polyhedron and its immediate environment. The two longest Th-F contacts can be partially accounted for by the close approach to the thorium atom

Table 2. Thermal parameters $\left(\times 10^{4}\right)$ defined as

$$
\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+\beta_{12} h k+\beta_{13} h l+\beta_{23} k l\right)\right]
$$

	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
	$53 \cdot 8(6)$	$20.6(2)$	$34 \cdot 0(4)$	0	0	$-0.9(11)$
Th	$71(4)$	$42(2)$	$79(5)$	0	0	$-21(4)$
$\mathrm{K}(1)$	$106(4)$	$33(2)$	$60(2)$	$-4(4)$	$-39(6)$	$-2(3)$
$\mathrm{K}(2)$	$107(4)$	$30(1)$	$67(2)$	$4(5)$	$20(7)$	$-7(3)$
$\mathrm{K}(3)$	$107(15)$					
$\mathrm{F}(1)$	$163(15)$	$20(4)$	$76(8)$	0	0	$9(10)$
$\mathrm{F}(2)$	$154(16)$	$28(5)$	$23(7)$	0	0	$7(11)$
$\mathrm{F}(3)$	$110(0)$	$25(3)$	$61(12)$	0	0	$8(11)$
$\mathrm{F}(4)$	$164(18)$	$25(6)$	$59(9)$	0	0	$-7(11)$
$\mathrm{F}(5)$	$94(11)$	$28(5)$	$59(9)$	0	0	$-15(11)$
$\mathrm{F}(6)$	$74(8)$	$36(3)$	$104(6)$	$10(8)$	$5(12)$	$-64(7)$
$\mathrm{F}(7)$	$59(7)$	$35(3)$	$172(12)$	$-5(8)-14(18)$	$-75(11)$	

Table 3. Observed and calculated structure factors
Column headings are $l, F_{o} / K,\left|F_{c}\right|$.

of the two potassium atoms nearest the two triangular faces of which the two fluorine atoms in question form an edge. This repulsive force also tends to determine which of the F-F distances are to be longer than 'contact' distances, as some of them must be, of course, since the radius ratio of Th^{4+} to F^{1-} is much larger than the 0.665 radius ratio of the ideal hard sphere model for this polyhedron type.

Table 4. Interatomic distances

The associated least-squares errors are $0.010,0.015$ and $0.010 \AA$ for Th-F, F-F, and K-F distances respectively. The numbers in parentheses preceding some distances are the multiplicities in the coordination polyhedron.

Th-F (1)	2.30 A	$\mathrm{K}(1)-\mathrm{F}(3)$	2.95 A
Th-F 2)	2.31	$\mathrm{K}(1)-\mathrm{F}(5)$	(2) 2.58
Th-F 3)	$2 \cdot 40$	$\mathrm{K}(1)-\mathrm{F}(6)$	(2) 2.63
Th-F(4)	$2 \cdot 40$	$\mathrm{K}(1)-\mathrm{F}(7)$	2.97
Th-F 6)	(2) 2.33	$\mathrm{K}(1)-\mathrm{F}(7)$	2.78
Th-F(7)	(2) 2.29		
		$\mathrm{K}(2)-\mathrm{F}(1)$	$2 \cdot 86$
$\mathrm{F}(1)-\mathrm{F}(4)$	2.71	$\mathrm{K}(2)-\mathrm{F}(2)$	2.80
$F(1)-\mathrm{F}(5)$	(2) 2.84	$\mathrm{K}(2)-\mathrm{F}(3)$	2.66
$F(2)-F(3)$	2.71	$\mathrm{K}(2)-\mathrm{F}(4)$	2.73
$\mathrm{F}(2)-\mathrm{F}(6)$	(2) 3.00	$\mathrm{K}(2)-\mathrm{F}(5)$	$2 \cdot 62$
$F(3)-F(4)$	2.72	$\mathrm{K}(2)-\mathrm{F}(7)$	$2 \cdot 62$
$F(3)-F(6)$	(2) 2.76		
$\mathrm{F}(4)-\mathrm{F}(6)$	(2) 2.88	$\mathrm{K}(3)-\mathrm{F}(1)$	$2 \cdot 70$
$\mathrm{F}(5)-\mathrm{F}(5)$	2.87	$\mathrm{K}(3)-\mathrm{F}(2)$	2.75
$\mathrm{F}(5)-\mathrm{F}(6)$	(2) $2 \cdot 70$	$\mathrm{K}(3)-\mathrm{F}(3)$	2.81
		$\mathrm{K}(3)-\mathrm{F}(4)$	2.77
		$\mathrm{K}(3)-\mathrm{F}(5)$	$3 \cdot 17$
		$\mathrm{K}(3)-\mathrm{F}(5)$	3.04
		$\mathrm{K}(3)-\mathrm{F}(6)$	$2 \cdot 63$
		$\mathrm{K}(3)-\mathrm{F}(7)$	$2 \cdot 62$

The fluorine atom which is not in the thorium coordination polyhedron (being $4.53 \AA$ away from the thorium atom) is surrounded by six potassium atoms whose configuration may be described as an irregular octahedron. Two of the potassium atoms have coordination numbers of eight (i.e. with K-F distances less than $3.5 \AA$) and the remaining potassium atom has a coordination number of seven.

It is not too surprising that the coordination number of the thorium atom is not nine in $\mathrm{K}_{5} \mathrm{ThF}_{9}$ since it would be necessary for the anion to have a formal charge of minus five to accomplish this. One could reduce the charge on the anion by choosing a central actinide ion with charge plus five (such as Pa^{5+}). All such M^{5+} ions have smaller ionic radii than Th^{4+} and prefer 8-coordination, although Pa^{5+}, as the largest of the M^{5+} ions, does have 9-coordination in $\mathrm{K}_{2} \mathrm{PaF}_{7}$ (Brown, Kettle \& Smith, 1967). Pa^{5+} is 8 -coordinated in cubic $\mathrm{Na}_{3} \mathrm{PaF}_{8}$ (Brown, Easey \& Rickard, 1969) as it also is in RbPaF_{6} (Burns, Levy \& Keller, 1968) and in KPaF_{6} and $\mathrm{NH}_{4} \mathrm{PaF}_{6}$ (Asprey, Kruse, Rosenzweig \& Penneman, 1966). Still, it might be worthwhile to look for hypothetical $\mathrm{K}_{4} \mathrm{PaF}_{9}$.

The authors are indebted to A. C. Larson for the use of his excellent crystallographic programs, to D. T. Cromer for the use of the diffractometer, and especially to T. K. Keenan for preparation of the sample.

Fig. 1. Stereo-view of the structure down the a axis. Thermal ellipsoid axes are 3 times the root-mean-square amplitude of vibration.

Fig. 2. Stereo-view showing F-F and Th-F distances.

Fig. 3. Stereo-view showing Th-K distances. $\mathrm{K}(9)$ in this Figure corresponds to $\mathrm{K}(1)$ in Table $1 ; \mathrm{K}(10)$ corresponds to $\mathrm{K}(2)$ and $K(11)$ to $K(3)$.

References

Abrahams, S. C., Ginsberg, A. P. \& Knox, K. (1964). Inorg. Chem. 3, 558.
Asker, W. J., Segnit, E. R. \& Wylie, A. W. (1952). J. Chem. Soc. p. 4470.
Asprey, L. B., Kruse, F. H., Rosenzweig, A. \& Penneman, R. A. (1966). Inorg. Chem. 5, 659.

Brown, D., Easey, J. F. \& Rickard, C. E. F. (1969). J. Chem. Soc. p. 1161.

Brown, D., Kettle, S. F. H. \& Smith, A. J. (1967). J. Chem. Soc. (A), p. 1429.
Brunton, G. \& Sears, D. R. (1969). Acta Cryst. B25, 2519.

Burns, J. H., Levy, H. A. \& Keller, O. L. Jr (1968). Acta Cryst. B24, 1675.

Busing, W. R., Ellison, R. D., Levy, H. A., King, S. P. \& Roseberry, R. T. (1967). The Oak Ridge ComputerControlled X-ray Diffractometer. ORNL-4143, Oak Ridge National Laboratory, Tennessee.
Cromer, D. T. (1965). Acta Cryst. 18, 17.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104.
Evans, H. T. (1961). Acta Cryst. 14, 689.
Ginsberg, A. P. (1964). Inorg. Chem. 3, 567.
Hamilton, W. C. (1965). Acta Cryst. 18, 502.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Knox, K. \& Ginsberg, A. P. (1964). Inorg. Chem. 3, 555.

Larson, A. C. (1967). Acta Cryst. 23, 664.
Penneman, R. A. \& Ryan, R. R. (1970). Unpublished work.
Penneman, R. A., Ryan, R. R. \& Rosenzweig, A. (1968). Chem. Comm. p. 990.
Ryan, R. R., Penneman, R. A. \& Rosenzweig, A. (1969). Acta Cryst. B25, 1958.
Zachariasen, W. H. (1948). J. Amer. Chem. Soc. 70, 2147. Zachariasen, W. H. (1963). Acta Cryst. 16, 1139.

Refinement of the Crystal Structure of Stilbite

By E. Galli
Istituto di Mineralogia dell' Università di Modena, Italy

(Received 2 June 1970)

Abstract

Stilbite, $\mathrm{Na}_{1 \cdot 28} \mathrm{Ca}_{4 \cdot 18} \mathrm{Mg}_{0 \cdot 18}\left[\mathrm{Al}_{10 \cdot 30} \mathrm{Si}_{25 \cdot 71} \mathrm{O}_{72}\right] .34 \cdot 07 \mathrm{H}_{2} \mathrm{O}$, a zeolite belonging to the heulandite group, crystallizes in the monoclinic, pseudo-orthorhombic, system, space group $C 2 / m$ with $a=13 \cdot 64, b=18 \cdot 24$, $c=11.27 \AA$ and $\beta=128^{\circ} ; Z=1$. The structure was refined by three-dimensional electron density syntheses and least-squares to a final reliability index R of 12.3% for observed reflexions. The silicate framework can be described as consisting of a fundamental polyhedral configuration containing fourand five-membered rings of tetrahedra. In the stilbite framework there are two sets of channels, the biggest running ${ }^{T}$ parallel ${ }^{3}$ to the a axis, the smallest to the c^{*} axis. Several attempts to identify the ordering of Si and Al atoms in the framework were made and the results discussed. As in related zeolites the exchangeable cations and water molecules occur within the cavities formed by the intersecting channels. Calcium atoms have been found to be completely insulated from framework atoms by a sphere of hydration of their own. Sodium atoms lie in interstices between these spheres and the framework wall. The (010) cleavage and habit of stilbite are well explained by the small number of oxygen bridges linking the tetrahedral sheets. Explanations of the twinning are suggested.

Introduction

Stilbite is a common natural zeolite formed as a result of late-stage hydrothermal activity and it occurs mainly in cavities of basalts and in crevices of metamorphic rocks.

Gabuda, Lundin \& Mikhailov (1963) investigated the position of the water molecules in stilbite by the nuclear magnetic resonance method.

The description of the unrefined framework of tetrahedra of stilbite has been given by Galli \& Gottardi (1966).

The purpose of this work was to refine the structure, locate the exchangeable-cation and water-molecule positions and investigate the $\mathrm{Si} / \mathrm{Al}$ distribution within the framework. The results of this research, along with derived data, are given in this report.

Experimental

The stilbite studied was from a basalt from Iceland (specimen No. 3157 of the Museo di Mineralogia dell' Università di Pisa). The crystal data used in this in-
vestigation, the same as used by Galli \& Gottardi (1966) are:

$$
\begin{aligned}
& a=13 \cdot 64 \pm 0 \cdot 03 \AA, \\
& b=18 \cdot 24 \pm 0.04 \\
& c=11 \cdot 27 \pm 0.02 \\
& \beta=128^{\circ} 0^{\prime} \pm 15^{\prime} \\
& U=2209 \AA^{3} \\
& \text { Space group } C 2 / m
\end{aligned}
$$

In the unit cell there is one stoichiometric unit
$\mathrm{Na}_{1 \cdot 28} \mathrm{Ca}_{4 \cdot 18} \mathrm{Mg}_{0 \cdot 18}\left[\mathrm{Al}_{10 \cdot 30} \mathrm{Si}_{25} \cdot{ }_{71} \mathrm{O}_{72}\right] \cdot 34 \cdot 07 \mathrm{H}_{2} \mathrm{O}$
$D_{\text {calc }}=2.23 \mathrm{~g} . \mathrm{cm}^{-3}$
$D_{\exp } 2 \cdot 19 \pm 0.01 \mathrm{~g} . \mathrm{cm}^{-3}$.
The experimental density was obtained with a torsion microbalance, on small splinters weighing a few milligrams.
As direction [102] is almost normal to a, stilbite is pseudo-orthorhombic with unit-cell dimensions

$$
a=13 \cdot 64, b=18.24, c=8.88 \AA ; \beta=89^{\circ} 5^{\prime} .
$$

Photographic data were collected on a Weissenberg camera with equi-inclination geometry and on a Buer-

[^0]: * This work was performed under the auspices of the U.S. Atomic Energy Commission.

